Reconstruct the Information

• • • • • • • •

Presented by :

- Houria BRAIKIA
- Tahar
- Theo
- Nicolas

Houria

• • •

• •

Machine Learning

ML is increasingly recognized for its capacity to accelerate research across a range of scientific disciplines by efficiently identifying patterns within vast and complex datasets.

understanding.

Microbiome Data

Microbiome data refers to the collective genetic material of microorganisms inhabiting a specific environment, such as the human gut, soil, or water.

- Count data: Indicates the number of occurrences of each species in a sample.
- Presence/absence data: Simply indicate whether each species is present or absent in a sample.
- **DNA sequence data:** Provide the DNA or RNA sequences.

Biomonitoring

The availability of microbiome data from marine environments has facilitated the assessment of environmental health.

The availability of microbiome data from marine environments has facilitated the assessment of environmental health.

The availability of microbiome data from marine environments has facilitated the assessment of environmental health.

AMBI = ((O x %G1) + (1.5 x %G2) + (3 x %G3) + (4.5 x %G4) + (6 x %G5)) / 100

The new AMBI 6.0 version is out, with new functionalities!

https://ambi.azti.es/download

+ Code + Texte

Extract list of species sp = mat['specieslist'][0][0][0]

> # Extract list of groups of species grp = mat['specieslist'][0][0][1] grp_list = [item for sublist in grp for item in sublist]

import pandas as pd pd.DataFrame({ 'Species' : sp_list, 'Group' : grp_list

Spe	
Abarenicola a	0
Abarenicola affinis a	1
Abarenicola affinis chile	2
Abarenicola clapa	3
Abarenicola claps	4
Zoidbergus tenuim	11342

flat_ls = [item for sublist in sp for item in sublist] sp_list = [item for sublist in flat_ls for item in sublist]

> cies Group ffinis ffinis ensis 3 redei aredi 3 anus ée à 19:02

V BAM Disque

↑ ↓ co **□ ≎** [] i i

AMBI = ((O x %G1) + (1.5 x %G2) + (3 x %G3) + (4.5 x %G4) + (6 x %G5)) / 100

AMBI values E	Cological
< 1.2	Very
Between 1.2 and 3.3	Ge
Between 3.3 and 4.3	Mod
Between 4.3 and 5.5	В
>=5.5	Very

Two fundamental pieces of information are needed to calculate the biotic index:

species group and abundance.

quality class

- good
- boc
- lerate
- ad
- z bad

Many species belong to group 5

A polluted environment

Reconstruct the Information

Supervised Machine Learning (SML) approache have been proposed to generate predictive models of BI values from eDNA data, even with unassigned taxa.

	OTU_ID	Total_Abund_Otu	FHF1- St1- Gr1-A	FHF1- St1- Gr1-B	FHF1- St1- Gr1-C	FHF1- St1- Gr2-A	FHF1- St2- Gr1-C	FHF1- St2- Gr2-A	FHF1- St2- Gr2-B	FHF1- St3- Gr1-A	 FHF5- St4- Gr2-B	FHF5- St4- Gr2-C	FHF5- St5- Gr1-A	FHF5- St5- Gr1-B	FHF5- St5- Gr1-C	FHF5- St5- Gr2-A	FHF5- St5- Gr2-B	FHF5- St5- Gr2-C
0	OTU0	662523	57	2	6	226	14782	18018	9607	52877	 3562	199	134	37	58	342	125	795
1	OTU1	574100	110	18	3124	84	12	10	26	60	 764	132	4930	2524	6925	179	91	574
2	OTU2	698457	4846	38	4138	6178	2900	5306	11986	4026	 26016	51776	5043	3341	1879	3323	1921	15264
3	OTU3	532877	7043	39	7485	26166	35325	26655	14690	3930	 5	113	353	1675	537	2756	3764	7154
4	OTU4	463490	1990	68	2140	3919	2573	3563	13387	1149	 402	839	957	1202	954	1788	1811	3256
12327	OTU12327	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
12328	OTU12328	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
12329	OTU12329	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
12330	OTU12330	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
12331	OTU12331	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
6 - C - C - C - C - C - C - C - C - C -	10000																	

12332 rows × 127 columns

Reconstruct the Information

Supervised Machine Learning (SML) approache have been proposed to generate predictive models of BI values from eDNA data, even with unassigned taxa.

AMBI 5,96938 5,96938	EQ 5
AMBI 5,96938 5,96938	EQ 5
5,96938 5,96938	5
5,96938	
	5
5,96938	5
5,96853	5
5,96853	5
5,96853	5
1,30127	2
1,30127	2
1,30127	2
1,38916	2
1,38916	2
1,38916	2
2,40892	2
2,40892	2
2,40892	2
	<pre>>,96938 >,96853 >,96853 >,96853 >,96853 1,30127 1,30127 1,30127 1,30127 1,38916 1,38916 1,38916 1,38916 2,40892 2,40892 2,40892 2,40892 2,40892</pre>

Latitude		Longitude
Lucatore		congreade
62°46.935	N	6°55.399 E
62°46.935	Ν	6°55.399 E
62°46.935	N	6°55.399 E
62°46.935	Ν	6°55.399 E
62°46.935	Ν	6°55.399 E
62°46.935	N	6°55.399 E
62°46.457	N	6°56.861 E
62°46.457	Ν	6°56.861 E
62°46.457	Ν	6°56.861 E
62°46.457	N	6°56.861 E
62°46.457	Ν	6°56.861 E
62°46.457	Ν	6°56.861 E
62°46.623	Ν	6°55.701 E
62°46.623	N	6°55.701 E
62°46.623	Ν	6°55.701 E

Other Incomplete Information

a key limitation arises when applying SML to samples with different compositional data, necessitating the development of new models using new training data.

We proposed a solution that involves predicting EQ with minimal reference samples using USML.

We proposed a solution taht involves predicting EQ with minimal reference samples using USML.

Challenges

This approach demonstrates effective predictive capabilities, notably for eukaryotic markers, while highlighting challenges with dispersed bacterial data and single taxonomic group markers like foraminifera.

Conclusion

Our approach presents a promising solution to address the persistent challenge of insufficient data in reference databases.

Despite the progress made, it's important to note that the problem remains unsolved, highlighting the need for further research and innovation in this area.

Although supervised machine learning (SML) generally outperforms unsupervised machine learning (USML), the problem of missing labels hinders its use.

• • • •

•

• •

Reconstructing Hidden Ground Truths via Votes

Condorcet, aka, Father of Crowdsourcing

Chap I: Before Dark Times What reconstructing information meant during my PhD

Quiz Time

I am once again asking for you TO PARTICIPATE IN QUIZ

Looks like it's either Egyptian or Lebanese !

Ţ

.

Framework

- A set of *m* alternatives X: {*Tunisian*, *Egyptian*, *Lebanese*, *Syrian*}
- A hidden (unknown) ground truth alternative $a^* \in X$: *Tunisian*
- A set of *n* voters N: 3 Friends
- A profile of *n* approval ballots $A_i \subseteq X$: {Egy, Leb}, {Egy, Syr}, {Tun}

(+) Noise model: probability distribution over the set of possible approval ballots.

 \implies : Estimate the ground truth given the approval ballots by Maximum Likelihood Estimation.

When voters answer truthfully:

- A voter who knows the correct answer would select a single alternative.
- A voter who selects all the alternatives has no idea of the correct answer.

 $P_{\phi_i,d}(A_i|a^* = a) = \frac{1}{Z_i} \phi_i^{d(a^*,A_i)}, \forall a \in \mathcal{X}$

60 value

Neutrality

$\forall \pi \in \sigma(\mathcal{X}), P_{\phi,d}(A|a^* = a) = P_{\phi,d}(\pi(A)|a^* = \pi(a))$

$d(a, A) = \psi_{\mathbf{d}}(|a \cap A|, |A|)$

$\tau(A)|a^* = \pi(a))$

Homogeneous Noise

$$P_{\phi,d}(A_i|a^* = a) = \frac{1}{Z}\phi^{d(a^*,A_i)} = \frac{1}{Z}$$

Theorem

For $n \geq 3$, the maximum likelihood estimation rule ζ_d is a size-decreasing approval rule if and only if:

 $\Delta \psi_d : j \mapsto \psi_d(0,j) - \psi_d(1,j)$ is decreasing

 $\phi^{\psi_d(|a^* \cap A_i|, |A_i|)}$

Homogeneous Noise

Theorem

For $n \geq 3$, the maximum likelihood estimation rule ζ_d is a size-decreasing approval rule if and only if:

 $\Delta \psi_d : j \mapsto \psi_d(0,j) - \psi_d(1,j)$ is decreasing

Examples:

- Jaccard: 1/card
- Dice: 2/(card+1)

Heterogeneous Noise $\psi_d(|a \cap A|, |A|) = f(|a \cap A|) + g(|A|)$

Theorem

If for every $1 \le k \le m - 1$ we have that:

$$g(k+1) - g(k) \ge \frac{1}{2} [f(0) - \frac{1}{2}] (f(0) - \frac{1}{2}) = \frac{1}$$

Then:

$$\frac{\partial \mathbb{E}_{\phi,d}[|A_i|]}{\partial \phi} \geq 0$$

- *f*(1)]

Condorcet Noise

 $P_{p_i}(a \in A_i | a = a^*) = P_{p_i}(a \notin A_i | a \neq a^*) = p_i, \forall a \in X$

Theorem

For $m \ge 2$, we have that:

 $\mathbb{E}_{p}[|A_{i}|] = (m-1) - (m-2)p$

Why is this interesting?

$$p_i = \frac{m-1-\mathbb{E}_{p_i}[|A_i|]}{m-2}$$

Experiments

✓ Leopard

- Tiger
- 🗌 Puma
- 🗹 Jaguar
- □ Lion(ess)
- Cheetah

等南法駕納 □ Hebrew

🗆 Russian **I**Japanese 🗹 Thai Chinese 🗆 Tamil 🗆 Latin 🗆 Hindi

- **G**ravel
- 🔲 Grass
- **M** Brick
- *⊠* Wood
- Sand
- 🗌 Cloth

Results

Results

Results

Back to the Quiz.

General Conclusion

