Primer on Hardness of Approximation

Sofia Vazquez Alferez

LAMSADE Spring School April 2024

Table of Contents

(1) Two Companion Problems
(2) Some motivation for Hardness of Approximation
(3) Definition of an approximation algorithm
(4) How to prove hardness
(5) An example

6 The magic of the PCP theorem
(7) Conclusion

Two Companion Problems

A problem

A problem

- Monitor street traffic efficiently.

A problem

- Monitor street traffic efficiently.
- Goal: use the smallest number of cameras whilst ensuring every junction is covered.

A problem

This task resembles the Minimum Vertex Cover problem!

A problem

This task resembles the Minimum Vertex Cover problem! (Junctions are edges and cameras are vertices)

Minimum Vertex Cover

Minimum Vertex Cover

Given: A graph $G=(V, E)$.

Minimum Vertex Cover

Given: A graph $G=(V, E)$.
Find: A minimum subset $C \subseteq V$, such that C "covers" all edges in E.

Minimum Vertex Cover

Given: A graph $G=(V, E)$.
Find: A minimum subset $C \subseteq V$, such that C "covers" all edges in E. i.e., for every edge $u v \in E$ either $u \in C$ or $v \in C$, or both.

An other problem

An other problem

- Predict the mode of binding of a small molecule to a receptor.

An other problem

- Predict the mode of binding of a small molecule to a receptor.
- Simplified Model:

An other problem

- Predict the mode of binding of a small molecule to a receptor.
- Simplified Model:
- Vertices: (receptor point, molecule point) pairs.

An other problem

- Predict the mode of binding of a small molecule to a receptor.
- Simplified Model:
- Vertices: (receptor point, molecule point) pairs.
- Edges: (R1,M1)-(R2,M2) if distance (R1,R2) \approx distance(M1, M2)

An other problem

- Predict the mode of binding of a small molecule to a receptor.
- Simplified Model:
- Vertices: (receptor point, molecule point) pairs.
- Edges: (R1,M1)-(R2,M2) if distance(R1,R2) \approx distance(M1, M2)
- Find largest clique.

Maximum Clique

Maximum Clique

Given: A graph $G=(V, E)$.

Maximum Clique

Given: A graph $G=(V, E)$.
Find: A maximum clique in the graph.

Maximum Clique

Given: A graph $G=(V, E)$.
Find: A maximum clique in the graph.
i.e. a subset $C \subseteq V$ of maximum size such that $G[C]$ is a complete graph.

Our two friends:

Minimum Vertex Cover

Given: A graph $G=(V, E)$.
Find: A minimum subset $C \subseteq V$, such that C "covers" all edges in E.

Maximum Clique

Given: A graph $G=(V, E)$.
Find: A maximum clique in the graph.

Are they REALLY your friends?

Are they REALLY your friends?

Are they REALLY your friends?

${ }^{1}$ Images: http://isaacsteele.com/cv/edu/college/junior/vertexcover.shtml

Are they REALLY your friends?

${ }^{1}$ Images: http://isaacsteele.com/cv/edu/college/junior/vertexcover.shtml

Are they REALLY your friends?

${ }^{1}$ Images: http://isaacsteele.com/cv/edu/college/junior/vertexcover.shtml

Are they REALLY your friends?

${ }^{2}$ Images:https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dnacomputing/clique.htm

Some motivation for Hardness of Approximation

Some facts about our friends

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.
- What do we do when we see hard problems?

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.
- What do we do when we see hard problems?
- Design algorithm that gives optimal solutions but is efficient only on some instances.

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.
- What do we do when we see hard problems?
- Design algorithm that gives optimal solutions but is efficient only on some instances.
- Design an algorithm that is always efficient but gives sub-optimal solutions.

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.
- What do we do when we see hard problems?
- Design algorithm that gives optimal solutions but is efficient only on some instances.
- Design an algorithm that is always efficient but gives sub-optimal solutions.(Approximation algorithms)

Some facts about our friends

- Minimum Vertex Cover and Maximum Clique are both NP-hard.
- What do we do when we see hard problems?
- Design algorithm that gives optimal solutions but is efficient only on some instances.
- Design an algorithm that is always efficient but gives sub-optimal solutions.(Approximation algorithms)
- Sometimes impossible!

Definition of an approximation algorithm

Definitions

α-approximation (for minimization)

For $\alpha \geq 1$, an algorithm is an α-approximation algorithm for a minimization problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot$ OPT.

Definitions

α-approximation (for minimization)

For $\alpha \geq 1$, an algorithm is an α-approximation algorithm for a minimization problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot O P T$.

α-approximation (for maximization)

For $\alpha \geq 1$, an algorithm is an α-approximation algorithm for a maximization problem if on every input instance the algorithm finds a solution with cost $\geq \frac{1}{\alpha} \cdot$ OPT.

Definitions

α-approximation (for minimization)

For $\alpha \geq 1$, an algorithm is an α-approximation algorithm for a minimization problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot O P T$.

α-approximation (for maximization)

For $\alpha \geq 1$, an algorithm is an α-approximation algorithm for a maximization problem if on every input instance the algorithm finds a solution with cost $\geq \frac{1}{\alpha} \cdot$ OPT.

So the smaller α is the better.

Example: VC

```
Algorithm 1: Approx-Vertex-Cover(G)
\(1 C \leftarrow \emptyset\)
2 while \(E \neq \emptyset\)
pick any \(\{u, v\} \in E\)
\(C \leftarrow C \cup\{u, v\}\)
delete all eges incident to either \(u\) or \(v\)
```


Example: VC

This is a 2-approximation algorithm.

Example: VC

This is a 2-approximation algorithm.

- It gives a vertex cover.

Example: VC

This is a 2-approximation algorithm.

- It gives a vertex cover.
- The optimum vertex cover must cover every edge in C. So, it must include at least one of the endpoints of each edge in C. Thus $O P T \geq 1 / 2|C|$.

How to prove hardness

Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that:

Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that:

- maps every YES instance of L to a YES instance of C.

Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that:

- maps every YES instance of L to a YES instance of C.
- maps every NO instance of L to a NO instance of C.

Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust) reduction from your favourite NP-hard problem L that:

Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust) reduction from your favourite NP-hard problem L that:

- maps every YES instance of L to a YES instance of C

Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust) reduction from your favourite NP-hard problem L that:

- maps every YES instance of L to a YES instance of C
- maps every NO instance of L to a VERY-MUCH-NO instance of C.

Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust) reduction from your favourite NP-hard problem L that:

- maps every YES instance of L to a YES instance of C
- maps every NO instance of L to a VERY-MUCH-NO instance of C. Such that if we could approximate C we would be able to distinguish between instances of L

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

- If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes instance of clique (there exists a clique of size k).

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

- If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes instance of clique (there exists a clique of size k).
- If ϕ is not satisfiable, it gets mapped to instance (H, k) of clique where H has no clique of size $k / 3$

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

- If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes instance of clique (there exists a clique of size k).
- If ϕ is not satisfiable, it gets mapped to instance (H, k) of clique where H has no clique of size $k / 3$
If a 2 -approximation algorithm A for max clique exists, then:

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

- If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes instance of clique (there exists a clique of size k).
- If ϕ is not satisfiable, it gets mapped to instance (H, k) of clique where H has no clique of size $k / 3$
If a 2-approximation algorithm A for max clique exists, then:
- $A(G) \geq k / 2 \leftarrow$ we know $k / 2$ is the worst A will return.

Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such that:

- If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes instance of clique (there exists a clique of size k).
- If ϕ is not satisfiable, it gets mapped to instance (H, k) of clique where H has no clique of size $k / 3$
If a 2-approximation algorithm A for max clique exists, then:
- $A(G) \geq k / 2 \leftarrow$ we know $k / 2$ is the worst A will return.
- $A(H) \leq k / 3 \leftarrow$ we know $k / 3$ is the best A will return.

Theorems the heart of Hardness

For exact optimization:

Theorems the heart of Hardness

For exact optimization:

Cook-Levin Theorem

Assuming $P \neq N P$ it is hard to distinguish between:

- an instance ϕ of SAT that has a satisfying assignment.
- an instance ϕ of SAT that has no satisfying assignment.

Theorems the heart of Hardness

For exact optimization:

Cook-Levin Theorem

Assuming $P \neq N P$ it is hard to distinguish between:

- an instance ϕ of SAT that has a satisfying assignment.
- an instance ϕ of SAT that has no satisfying assignment.

For approximation:

PCP Theorem

There is a constant $\epsilon_{M}>0$ for which, assuming $P \neq N P$, it is hard to distinguish between:

- an instance ϕ (on m clauses) of MAX-3SAT that has a satisfying assignment (there is an assignment that satisfies all m clauses)
- an instance ϕ (on m clauses) of MAX-3SAT such that any assignment satisfies at most $\left(1-\epsilon_{M}\right) \cdot m$ clauses.

An example

VC Example ${ }^{3}$

${ }^{3}$ Known: VC cannot be approximated to a factor of $\sqrt{2}-\epsilon$ for any $\epsilon>0$

VC Example ${ }^{3}$

It is hard to ϵ_{v}-approximate $\mathrm{VC}(30)$

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that transforms a Boolean formula ϕ to a graph $G=(V, E)$ such that:
${ }^{3}$ Known: VC cannot be approximated to a factor of $\sqrt{2}-\epsilon$ for any $\epsilon>0$

VC Example ${ }^{3}$

It is hard to ϵ_{v}-approximate $\mathrm{VC}(30)$

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that transforms a Boolean formula ϕ to a graph $G=(V, E)$ such that:

- if $\operatorname{OPT}(\phi)=m$, then $\operatorname{OPT}(G) \leq \frac{2}{3}|V|$
${ }^{3}$ Known: VC cannot be approximated to a factor of $\sqrt{2}-\epsilon$ for any $\epsilon>0$

VC Example ${ }^{3}$

It is hard to ϵ_{v}-approximate $\mathrm{VC}(30)$

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that transforms a Boolean formula ϕ to a graph $G=(V, E)$ such that:

- if $\operatorname{OPT}(\phi)=m$, then $\operatorname{OPT}(G) \leq \frac{2}{3}|V|$
- if $\operatorname{OPT}(\phi)<\left(1-\epsilon_{b}\right) \cdot m$, then $\operatorname{OPT}(G)>\left(1+\epsilon_{V}\right) \frac{2}{3}|V|$
${ }^{3}$ Known: VC cannot be approximated to a factor of $\sqrt{2}-\epsilon$ for any $\epsilon>0$

Sketch

Sketch

The size of a maximum independent set in G is precisely $\operatorname{OPT}(\phi)$.

Sketch

The size of a maximum independent set in G is precisely $\operatorname{OPT}(\phi)$. The complement of a maximum independent set in G is a minimum vertex cover.

Sketch

The size of a maximum independent set in G is precisely $\operatorname{OPT}(\phi)$.
The complement of a maximum independent set in G is a minimum vertex cover.
Therefore, if $\operatorname{OPT}(\phi)=m$ then $\operatorname{OPT}(G)=2 m$.

Sketch

The size of a maximum independent set in G is precisely $\operatorname{OPT}(\phi)$.
The complement of a maximum independent set in G is a minimum vertex cover.
Therefore, if $\operatorname{OPT}(\phi)=m$ then $\operatorname{OPT}(G)=2 m$.If $\operatorname{OPT}(\phi)<\left(1-\epsilon_{b}\right) \cdot m$, then $\operatorname{OPT}(G)>\left(2+\epsilon_{b}\right) m$.

The magic of the PCP theorem

Another formulation of the PCP theorem

PCP Theorem

$N P=P C P(\log , O(1))$

PCP explained

PCP explained

PCP explained

PCP explained

${ }^{4}$ Image: Vazirani, V. (2001) Approximation algorithms. Springer.

Another formulation of the PCP theorem

PCP Theorem
 $N P=P C P(\log , O(1))$

Another formulation of the PCP theorem

PCP Theorem
 $N P=P C P(\log , O(1))$

Observation
$N P=P C P(0$, poly $)$

Conclusion

Conclusion

- Important to study hardness of approximation for NP-hard problems.

Conclusion

- Important to study hardness of approximation for NP-hard problems.
- For hardness of approximation, need more robust reductions between combinatorial problems

Conclusion

- Important to study hardness of approximation for NP-hard problems.
- For hardness of approximation, need more robust reductions between combinatorial problems
- The PCP theorem is cool!

Resources and Aknowledgements

I took a lot of inspiration from these four sources:

- Oliveira, R. (2020) Lecture 18: Hardness of Approximation. https://cs.uwaterloo.ca/~r5olivei/courses/2020-fall-cs466/lecture18-hardness-approximation-post.pdf
- Scheideler, C. (2005) Lecture 9- Approximation and Complexity. https://www.cs.jhu.edu/~scheideler/courses/600.471_S05/lecture_9.pdf
- Warnow,T. (2005) Approximation Algorithms (continued). http://tandy.cs.illinois.edu/dartmouth-cs-approx.pdf
- Vazirani, V. (2001) Approximation algorithms. Springer.

I stole the different images from:

- The cool PCP cartoon: https://www.zkcamp.xyz/blog/information-theory
- City map: https://www.istockphoto.com/fr/vectoriel/city-voir-le-plan-gm1095330908-294013033?searchscope=image\%2Cfilm
- Molecular docking: https://condrug.com/urun/molecular-docking/
- The VC approx alg: https://www.javatpoint.com/daa-approximation-algorithm-vertex-cover

The idea of molecular docking as clique:
Kuhl, F.S., Crippen, G.M. and Friesen, D.K. (1984), A combinatorial algorithm for calculating ligand binding. J. Comput. Chem., 5: 2434. https://doi.org/10.1002/jcc.540050105

Extras

Most common approximation classes

- $\alpha=O\left(n^{c}\right) \leftarrow$ Clique
- $\alpha=O(\log n) \leftarrow$ Set cover
- $\alpha=O(1) \leftarrow$ Vertex Cover

