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A problem

@ Monitor street traffic efficiently.

@ Goal: use the smallest number of cameras whilst ensuring every
junction is covered.
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A problem
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This task resembles the Minimum Vertex Cover problem! (Junctions are
edges and cameras are vertices)
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Minimum Vertex Cover
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Minimum Vertex Cover
Given: A graph G = (V,E).
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Minimum Vertex Cover
Given: A graph G = (V,E).
Find: A minimum subset C C V, such that C “covers” all edges in E.
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Minimum Vertex Cover

Given: A graph G = (V,E).
Find: A minimum subset C C V, such that C “covers” all edges in E.
i.e., for every edge uv € E either ue C or v € C, or both.
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An other problem
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An other problem

@ Predict the mode of binding of a small molecule to a receptor.
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An other problem

@ Predict the mode of binding of a small molecule to a receptor.
@ Simplified Model:
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An other problem

@ Predict the mode of binding of a small molecule to a receptor.
@ Simplified Model:
@ Vertices: (RECEPTOR POINT, MOLECULE POINT) pairs.
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An other problem

@ Predict the mode of binding of a small molecule to a receptor.
@ Simplified Model:

@ Vertices: (RECEPTOR POINT, MOLECULE POINT) pairs.
e Edges: (R1,M1)—(R2,M2) if distance(R1,R2) ~ distance(M1, M2)
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An other problem

@ Predict the mode of binding of a small molecule to a receptor.
@ Simplified Model:

@ Vertices: (RECEPTOR POINT, MOLECULE POINT) pairs.
e Edges: (R1,M1)—(R2,M2) if distance(R1,R2) ~ distance(M1, M2)

@ Find largest clique.
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Maximum Clique
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Maximum Clique
Given: A graph G = (V,E).
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Maximum Clique
Given: A graph G = (V, E).
Find: A maximum clique in the graph.
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Maximum Clique
Given: A graph G = (V,E).
Find: A maximum clique in the graph.
i.e. a subset C C V of maximum size such that G[C] is a complete
graph.

S. Vazquez Alferez Primer on Hardness of Approximation April 2024 8/36



Our two friends:

Minimum Vertex Cover

Given: A graph G = (V,E).
Find: A minimum subset C C V, such that C “covers” all edges in E.

Maximum Clique
Given: A graph G = (V,E).
Find: A maximum clique in the graph.
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Are they REALLY your friends?
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Are they REALLY your friends?
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Are they REALLY your friends?

"Images: http://isaacsteele.com/cv/edu/college/junior/vertexcover.shiml
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Are they REALLY your friends?
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Are they REALLY your friends?

2lmages:https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dna-
computing/clique.htm
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Some motivation for Hardness of Approximation
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Some facts about our friends
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.
@ What do we do when we see hard problems?
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.
@ What do we do when we see hard problems?

e Design algorithm that gives optimal solutions but is efficient only on
some instances.
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.
@ What do we do when we see hard problems?

o Design algorithm that gives optimal solutions but is efficient only on
some instances.

e Design an algorithm that is always efficient but gives sub-optimal
solutions.
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.
@ What do we do when we see hard problems?

o Design algorithm that gives optimal solutions but is efficient only on
some instances.

e Design an algorithm that is always efficient but gives sub-optimal
solutions.(Approximation algorithms)
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Some facts about our friends

@ Minimum VERTEX Cover and MaxiMum Criaue are both NP-hard.

@ What do we do when we see hard problems?
e Design algorithm that gives optimal solutions but is efficient only on

some instances.
e Design an algorithm that is always efficient but gives sub-optimal
solutions.(Approximation algorithms)

@ Sometimes impossible!
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Definition of an approximation algorithm
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a-approximation (for minimization)

For @ > 1, an algorithm is an a-approximation algorithm for a minimization
problem if on every input instance the algorithm finds a solution with cost
<a-OPT.
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a-approximation (for minimization)
For @ > 1, an algorithm is an a-approximation algorithm for a minimization

problem if on every input instance the algorithm finds a solution with cost
<a-OPT.

a-approximation (for maximization)

For @ > 1, an algorithm is an a@-approximation algorithm for a maximization
problem if on every input instance the algorithm finds a solution with cost
>1.0PT.

-
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a-approximation (for minimization)
For @ > 1, an algorithm is an a-approximation algorithm for a minimization

problem if on every input instance the algorithm finds a solution with cost
<a-OPT.

a-approximation (for maximization)

For @ > 1, an algorithm is an a@-approximation algorithm for a maximization
problem if on every input instance the algorithm finds a solution with cost
>1.0PT.

-

So the smaller « is the better.
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Example: VC

Algorithm 1: APPROX-VERTEX-COVER(G)

1 C—0
2 while E # 0)

pick any {u,v} € F
C — CU{u,v}

delete all eges incident to either u or v

return C
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Example: VC

This is a 2-approximation algorithm.
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Example: VC

This is a 2-approximation algorithm.
@ It gives a vertex cover.
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Example: VC

This is a 2-approximation algorithm.
@ It gives a vertex cover.

@ The optimum vertex cover must cover every edge in C. So, it must
include at least one of the endpoints of each edge in C. Thus
OPT > 1/2|C|.
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How to prove hardness
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Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually

pick our favorite NP-complete combinatorial problem L and we show a
reduction that:
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Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually

pick our favorite NP-complete combinatorial problem L and we show a
reduction that:

@ maps every YES instance of L to a YES instance of C.

S. Vazquez Alferez Primer on Hardness of Approximation April 2024 20/36



Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually

pick our favorite NP-complete combinatorial problem L and we show a
reduction that:

@ maps every YES instance of L to a YES instance of C.
@ maps every NO instance of L to a NO instance of C.
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Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust)
reduction from your favourite NP-hard problem L that:
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Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust)
reduction from your favourite NP-hard problem L that:

@ maps every YES instance of L to a YES instance of C
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Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust)
reduction from your favourite NP-hard problem L that:

@ maps every YES instance of L to a YES instance of C
@ maps every NO instance of L to a VERY-MUCH-NO instance of C.
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Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust)
reduction from your favourite NP-hard problem L that:

@ maps every YES instance of L to a YES instance of C
@ maps every NO instance of L to a VERY-MUCH-NO instance of C.

Such that if we could approximate C we would be able to distinguish be-
tween instances of L
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:

o If ¢ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k).
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:

o If ¢ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k).

@ If ¢ is not satisfiable, it gets mapped to instance (H, k) of clique
where H has no clique of size k/3
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:

o If ¢ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k).

@ If ¢ is not satisfiable, it gets mapped to instance (H, k) of clique
where H has no clique of size k/3

If a 2-approximation algorithm A for max cLiQue exists, then:
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:

o If ¢ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k).

@ If ¢ is not satisfiable, it gets mapped to instance (H, k) of clique
where H has no clique of size k/3

If a 2-approximation algorithm A for max cLiQue exists, then:
@ A(G) > k/2 « we know k/2 is the worst A will return.
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Getting some intuition:

Suppose we had an instance ¢ of SAT and that we had a reduction such
that:

o If ¢ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k).

@ If ¢ is not satisfiable, it gets mapped to instance (H, k) of clique
where H has no clique of size k/3

If a 2-approximation algorithm A for max cLiQue exists, then:
@ A(G) = k/2 « we know k/2 is the worst A will return.
@ A(H) < k/3 « we know k/3 is the best A will return.
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Theorems the heart of Hardness

For exact optimization:
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Theorems the heart of Hardness

For exact optimization:

Cook-Levin Theorem
Assuming P # NP it is hard to distinguish between:

@ an instance ¢ of SAT that has a satisfying assignment.
@ an instance ¢ of SAT that has no satisfying assignment.
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Theorems the heart of Hardness

For exact optimization:

Cook-Levin Theorem

Assuming P # NP it is hard to distinguish between:
@ an instance ¢ of SAT that has a satisfying assignment.
@ an instance ¢ of SAT that has no satisfying assignment.

For approximation:

PCP Theorem
There is a constant ey, > 0 for which, assuming P # NP, it is hard to
distinguish between:
@ an instance ¢ (on m clauses) of MAX-3SAT that has a satisfying
assignment (there is an assignment that satisfies all m clauses)

@ an instance ¢ (on m clauses) of MAX-3SAT such that any assignment
satisfies at most (1 — ey) - m clauses.
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An example
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VC Example®

3Known: VC cannot be approximated to a factor of V2 — e for any € > 0
S. Vazquez Alferez Primer on Hardness of Approximation April 2024 25/36



VC Example®

It is hard to €,-approximate VC(30)

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that
transforms a Boolean formula ¢ to a graph G = (V, E) such that:

3Known: VC cannot be approximated to a factor of V2 — e for any € > 0
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VC Example®

It is hard to €,-approximate VC(30)

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that
transforms a Boolean formula ¢ to a graph G = (V, E) such that:

e if OPT(¢) = m, then OPT(G) < 3|V|

3Known: VC cannot be approximated to a factor of V2 — e for any € > 0
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VC Example®

It is hard to €,-approximate VC(30)

There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that
transforms a Boolean formula ¢ to a graph G = (V, E) such that:

o if OPT(¢) = m, then OPT(G) < 2|V|
o if OPT(¢) < (1 — &) - m, then OPT(G) > (1 + &) 2|V

3Known: VC cannot be approximated to a factor of V2 — e for any € > 0
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Sketch
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The size of a maximum independent set in G is precisely OPT(¢).
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Sketch
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The size of a maximum independent set in G is precisely OPT(¢).
The complement of a maximum independent set in G is a minimum vertex
cover.
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Sketch
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The size of a maximum independent set in G is precisely OPT(¢).

The complement of a maximum independent set in G is a minimum vertex
cover.

Therefore, if OPT(¢) = mthen OPT(G) = 2m.
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Sketch

(X1\/X_2VX3)/\()?1VX2VX3)

) T

Ty z3 T2

A _ J -

z3

The size of a maximum independent set in G is precisely OPT(¢).

The complement of a maximum independent set in G is a minimum vertex
cover.

Therefore, if OPT(¢) = mthen OPT(G) = 2m.If OPT(¢) < (1 —ep) - m,
then OPT(G) > (2 + &,)m.
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The magic of the PCP theorem

S. Vazquez Alferez Primer on Hardness of Approximation April 2024 27/36



Another formulation of the PCP theorem

PCP Theorem
NP = PCP(log, O(1))
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PCP explained

Here’s the answer:

vl
= U
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PCP explained

Here’s the answer:

> 4
éo Q2. What's the color in D and E?
a

Q3. What's the color in G and H?
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PCP explained

S. Vazquez Alferez Primer on Hardness of Approximation April 2024



PCP explained

Verifier
|4

—* Input
I I

—————l Proof
| y |

‘ Random bits

Work tape I

L |

1

*Image: Vazirani, V. (2001) Approximation algorithms. Springer.
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Another formulation of the PCP theorem

PCP Theorem
NP = PCP(log, O(1))
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Another formulation of the PCP theorem

PCP Theorem
NP = PCP(log, O(1))

Observation
NP = PCP(0, poly)
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Conclusion
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Conclusion

@ Important to study hardness of approximation for NP-hard problems.
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Conclusion

@ Important to study hardness of approximation for NP-hard problems.

@ For hardness of approximation, need more robust reductions
between combinatorial problems
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Conclusion

@ Important to study hardness of approximation for NP-hard problems.

@ For hardness of approximation, need more robust reductions
between combinatorial problems

@ The PCP theorem is cool!
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Resources and Aknowledgements

| took a lot of inspiration from these four sources:

@ Oliveira, R. (2020) Lecture 18: Hardness of Approximation.
https://cs.uwaterloo.ca/~r5olivei/courses/2020-fall-cs466/lecture18-
hardness-approximation-post.pdf

@ Scheideler, C. (2005) Lecture 9- Approximation and Complexity.
https://www.cs.jhu.edu/~scheideler/courses/600.471_S05/lecture_9.pdf

@ Warnow,T. (2005) Approximation Algorithms (continued).
http://tandy.cs.illinois.edu/dartmouth-cs-approx.pdf

@ Vazirani, V. (2001) Approximation algorithms. Springer.
| stole the different images from:
@ The cool PCP cartoon: https://www.zkcamp.xyz/blog/information-theory
(*)] City map: https://www.istockphoto.com/fr/vectoriel/city-voir-le-plan-gm1095330908-294013033?searchscope=image %2Cfilm
@ Molecular docking: https://condrug.com/urun/molecular-docking/
@ Theve approx alg: https://www.javatpoint.com/daa-approximation-algorithm-vertex-cover

The idea of molecular docking as clique:
Kuhl, F.S., Crippen, G.M. and Friesen, D.K. (1984), A combinatorial algorithm for calculating ligand binding. J. Comput. Chem., 5: 24-
34. https://doi.org/10.1002/jcc.540050105
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Most common approximation classes
@ o = O(n°) « Clique
@ a = O(log n) « Set cover
@ a = O(1) « Vertex Cover
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