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Two Companion Problems
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A problem

Monitor street traffic efficiently.

Goal: use the smallest number of cameras whilst ensuring every
junction is covered.
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A problem

This task resembles the Minimum Vertex Cover problem!

(Junctions are
edges and cameras are vertices)
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Minimum Vertex Cover

Given: A graph G = (V ,E).

Find: A minimum subset C ⊆ V , such that C “covers” all edges in E.
i.e., for every edge uv ∈ E either u ∈ C or v ∈ C, or both.
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An other problem

Predict the mode of binding of a small molecule to a receptor.
Simplified Model:

Vertices: (receptor point, molecule point) pairs.
Edges: (R1,M1)–(R2,M2) if distance(R1,R2) ≈ distance(M1, M2)

Find largest clique.
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Maximum Clique

Given: A graph G = (V ,E).

Find: A maximum clique in the graph.
i.e. a subset C ⊆ V of maximum size such that G[C] is a complete
graph.
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Our two friends:

Minimum Vertex Cover
Given: A graph G = (V ,E).

Find: A minimum subset C ⊆ V , such that C “covers” all edges in E.

Maximum Clique
Given: A graph G = (V ,E).

Find: A maximum clique in the graph.
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Are they REALLY your friends?
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Are they REALLY your friends?

1

1Images: http://isaacsteele.com/cv/edu/college/junior/vertexcover.shtml
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Are they REALLY your friends?

2

2Images:https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dna-
computing/clique.htm
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Some motivation for Hardness of Approximation
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Some facts about our friends

Minimum Vertex Cover and Maximum Clique are both NP-hard.
What do we do when we see hard problems?

Design algorithm that gives optimal solutions but is efficient only on
some instances.
Design an algorithm that is always efficient but gives sub-optimal
solutions.(Approximation algorithms)

Sometimes impossible!
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Definition of an approximation algorithm
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Definitions

α-approximation (for minimization)
For α ≥ 1, an algorithm is an α-approximation algorithm for a minimization
problem if on every input instance the algorithm finds a solution with cost
≤ α · OPT .

α-approximation (for maximization)
For α ≥ 1, an algorithm is an α-approximation algorithm for a maximization
problem if on every input instance the algorithm finds a solution with cost
≥ 1
α · OPT .

So the smaller α is the better.
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Example: VC
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Example: VC

This is a 2-approximation algorithm.

It gives a vertex cover.

The optimum vertex cover must cover every edge in C. So, it must
include at least one of the endpoints of each edge in C. Thus
OPT ≥ 1/2|C |.
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How to prove hardness
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Proving Hardness - Exact Optimization

When we prove that a combinatorial problem C is NP-hard, we usually
pick our favorite NP-complete combinatorial problem L and we show a
reduction that:

maps every YES instance of L to a YES instance of C.

maps every NO instance of L to a NO instance of C.
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Proving Hardness of Approximation

To prove that a problem C is hard to approximate we need a (more robust)
reduction from your favourite NP-hard problem L that:

maps every YES instance of L to a YES instance of C

maps every NO instance of L to a VERY-MUCH-NO instance of C.

Such that if we could approximate C we would be able to distinguish be-
tween instances of L
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Getting some intuition:

Suppose we had an instance ϕ of SAT and that we had a reduction such
that:

If ϕ is satisfiable, it gets mapped to (G, k), where (G, k) is a yes
instance of clique (there exists a clique of size k ).

If ϕ is not satisfiable, it gets mapped to instance (H, k) of clique
where H has no clique of size k/3

If a 2-approximation algorithm A for max clique exists, then:

A(G) ≥ k/2← we know k/2 is the worst A will return.

A(H) ≤ k/3← we know k/3 is the best A will return.
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Theorems the heart of Hardness

For exact optimization:

Cook-Levin Theorem
Assuming P , NP it is hard to distinguish between:

an instance ϕ of SAT that has a satisfying assignment.

an instance ϕ of SAT that has no satisfying assignment.

For approximation:

PCP Theorem
There is a constant ϵM > 0 for which, assuming P , NP, it is hard to
distinguish between:

an instance ϕ (on m clauses) of MAX-3SAT that has a satisfying
assignment (there is an assignment that satisfies all m clauses)

an instance ϕ (on m clauses) of MAX-3SAT such that any assignment
satisfies at most (1 − ϵM) ·m clauses.
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An example
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VC Example3

It is hard to ϵv-approximate VC(30)
There is a gap-preserving reduction from MAX-3SAT(29) to VC(30) that
transforms a Boolean formula ϕ to a graph G = (V ,E) such that:

if OPT(ϕ) = m, then OPT(G) ≤ 2
3 |V |

if OPT(ϕ) < (1 − ϵb) ·m, then OPT(G) > (1 + ϵv)
2
3 |V |

3Known: VC cannot be approximated to a factor of
√

2 − ϵ for any ϵ > 0
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Sketch

(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3)

The size of a maximum independent set in G is precisely OPT(ϕ).
The complement of a maximum independent set in G is a minimum vertex
cover.
Therefore, if OPT(ϕ) = m then OPT(G) = 2m.If OPT(ϕ) < (1 − ϵb) · m,
then OPT(G) > (2 + ϵb)m.
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The magic of the PCP theorem
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Another formulation of the PCP theorem

PCP Theorem
NP = PCP(log,O(1))
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PCP explained
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PCP explained
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PCP explained

4

4Image: Vazirani, V. (2001) Approximation algorithms. Springer.
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Another formulation of the PCP theorem

PCP Theorem
NP = PCP(log,O(1))

Observation
NP = PCP(0, poly)
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Conclusion
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Conclusion

Important to study hardness of approximation for NP-hard problems.

For hardness of approximation, need more robust reductions
between combinatorial problems

The PCP theorem is cool!
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Resources and Aknowledgements

I took a lot of inspiration from these four sources:

Oliveira, R. (2020) Lecture 18: Hardness of Approximation.
https://cs.uwaterloo.ca/∼r5olivei/courses/2020-fall-cs466/lecture18-
hardness-approximation-post.pdf

Scheideler, C. (2005) Lecture 9- Approximation and Complexity.
https://www.cs.jhu.edu/∼scheideler/courses/600.471 S05/lecture 9.pdf

Warnow,T. (2005) Approximation Algorithms (continued).
http://tandy.cs.illinois.edu/dartmouth-cs-approx.pdf

Vazirani, V. (2001) Approximation algorithms. Springer.
I stole the different images from:

The cool PCP cartoon: https://www.zkcamp.xyz/blog/information-theory

City map: https://www.istockphoto.com/fr/vectoriel/city-voir-le-plan-gm1095330908-294013033?searchscope=image%2Cfilm

Molecular docking: https://condrug.com/urun/molecular-docking/

The VC approx alg: https://www.javatpoint.com/daa-approximation-algorithm-vertex-cover

The idea of molecular docking as clique:
Kuhl, F.S., Crippen, G.M. and Friesen, D.K. (1984), A combinatorial algorithm for calculating ligand binding. J. Comput. Chem., 5: 24-
34. https://doi.org/10.1002/jcc.540050105
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Extras

Most common approximation classes

α = O(nc)← Clique

α = O(log n)← Set cover

α = O(1)← Vertex Cover
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