Retrieving Item Ordering with Binary Data

"Comparing Ways of Obtaining Candidates Orderings from Approval Ballots"

Théo Delemazure

Paris Dauphine University – PSL

Technical University of Munich

Dominik Peters

Paris Dauphine University - PSL

Magdaléna Tydrichová

Chris Dong

CentraleSupélec

Introduction: Input data

Introduction: Input data

Introduction: Input data

Introduction: Output

(one of) The correct axis is:

Introduction: Output

(one of) The correct axis is:

Introduction: The problem

Introduction: The problem

Introduction: The problem

Question

When there is *no perfect axis*, what methods can we use to find the near-axes?

Solution 1: Voter Deletion

The optimal axis is the one for which we need to delete the least number of voters to get a *linear* profile.

Five methods

Solution 2 : Ballot Completion

The optimal axis is the one for which we need to add the least number of \checkmark to get a *linear* profile.

Five methods

Solution 3 : Minimum Flips

The optimal axis is the one for which we need to **add/remove** the least number of \checkmark/\checkmark to get a *linear* profile.

Five methods

Voter Deletion

Minimizes how many votes are not interval.

Ballot Completion

Minimizes how many reed to be added.

Minimum Flips

Minimizes how many need to be added/removed.

Solution 4 : Minimum Swaps

The optimal axis is the one for which we need to **swaps** the least number of candidates for each voter to get a *linear* profile.

Five methods

Voter Deletion

Minimizes how many votes are not interval.

Ballot Completion

Minimizes how many need to be added.

Minimum Flips

Minimizes how many need to be added/removed.

Minimum Swaps

Minimizes the number of swaps on the axis.

Solution 5 : Forbidden Triples

The optimal axis is the one which minimizes the number of triplets (\checkmark , \checkmark , \checkmark).

Solution 5 : Forbidden Triples

The optimal axis is the one which minimizes the number of triplets (\checkmark , \times , \checkmark).

Five methods

Voter Deletion

Minimizes how many votes are not interval.

Ballot Completion

Forbidden Triples

Minimizes the number of triplets (, X, V).

Minimum Flips

Minimizes how many need to be added/removed.

Minimum Swaps

Minimizes the number of swaps on the axis.

Five methods

Voter Deletion

Minimizes how many votes are not interval.

Ballot Completion

Forbidden Triples

Minimizes the number of triplets (</ x, </).

Minimum Flips

Minimizes how many need to be added/removed.

Minimum Swaps

Minimizes the number of swaps on the axis.

Question

If different methods return different axes, which method(s) should we use?

Introducing...

Axioms: basic example

If there exist a perfect axis for the profile, this axis should be chosen.

Clone-proximity

Clones should be next to each other on the axis.

Resistance to cloning

Adding a clone should not change the order of the other candidates on the axis.

Clone-proximity

Clones should be next to each other on the axis.

Resistance to cloning

Adding a clone should not change the order of the other candidates on the axis.

Clone-proximity

Clones should be next to each other on the axis.

Resistance to cloning

Adding a clone should not change the order of the other candidates on the axis.

Axioms

Ballot Monotonicity

If we add approvals to the ballot of a voter to turn it into an **interval** of the optimal axis, this axis is still selected.

Axioms

Ballot Monotonicity

If we add approvals to the ballot of a voter to turn it into an **interval** of the optimal axis, this axis is still selected.

Axioms

Ballot Monotonicity

If we add approvals to the ballot of a voter to turn it into an **interval** of the optimal axis, this axis is still selected.

Characterization Result

Voter Deletion **is the only rule** to satisfy Ballot Monotonicity and Resistance to cloning.

Axioms satisfied

Ballot monotonicityResistance to cloning

Ballot monotonicityClearance

Clearance
Veto-centrism
Clone proximity

Voter Deletion

Minimizes how many votes are not interval.

Ballot Completion

Forbidden Triples

Minimizes the number of triplets (</ x, </).

Minimum Flips

Minimizes how many need to be added/removed.

Minimum Swaps

Minimizes the number of swaps on the axis.

× Nothing

ClearanceVeto-centrism

Introducing...

Experiments

Synthetic Data

We used different probabilistic models to generate data.

Real Data

We gather and collect approval data from various sources.

Experiments: France

Source of the data "Voter Autrement : The online experiment"

Experiments: France

Source of the data "Voter Autrement : The online experiment" Poll institutes

Baseline axes

LE SECOND CHOIX DES ELECTEURS HÉSITANTS Question : « Si finalement vous ne deviez pas voter pour [Nom du candidat], quel serait votre choix au premier tour ? » (Base : Inscrits, <u>certains d'aller voter qui ont exprimé une intention de vote mais qui ne sont pas certains de leur choix)</u>														
CANDIDAT CHOISI EN 1er	Philippe Poutou	Nathalie Arthaud	Jean-Luc Mélenchon	Fabien Roussel	Yannick Jadot	Anne Hidalgo	Emmanuel Macron	Valérie Pécresse	Jean Lassalle	Nicolas Dupont- Aignan	Marine Le Pen	Eric Zemmour	Non exprimé	TOTAL
Jean-Luc Mélenchon	4	1		9	23	8	20	2	5	3	12	3	10	100
Fabien Roussel	4	1	35		15	4	16	2	2	3	3	4	11	100
Yannick Jadot	3	1	35	2		9	33	6	2	2	1	1	5	100
Ennormal Manage	1		0	c	4.4	_			2	2	10	2	1.1	100

Experiments: France

Source of the data "Voter Autrement : The online experiment"

Baseline axes Poll institutes

Results

Voter Deletion	PCF	LO	NPA	LFI	EEL	PS	EM	LR	DLF	REC	RN	R
Minimum Flips	LO	NPA	LFI	PCF	PS	EELV	EM	LR	R	RN	REC	DLF
Ballot Completion	LO	NPA	PCF	LFI	EELV	PS	EM	LR	R	RN	REC	DLF
Minimum Swaps	LO	NPA	PCF	LFI	PS	EELV	EM	LR	R	RN	REC	DLF
Forbidden Triples	LO	NPA	LFI	PCF	PS	EELV	EM	LR	R	RN	REC	DLF

Experiments: US

Source of the data Opinions of the justices of the Supreme court of the USA.

Experiments: US

Source of the data Opinions of the justices of the Supreme court of the USA.

Baseline axes Using the Martin-Quinn method

Experiments: US

Source of the data Opinions of the justices of the Supreme court of the USA.

Baseline axes Using the Martin-Quinn method

Results

Forbidden Triple on the 2021 term

Source of the data

Tierlist maker website

Source of the data

Baseline axes I'm just having fun here

Source of the data Tierlist maker website

Baseline axes I'm just having fun here

Results (Ballot Completion)

Solo < II < I < Rogue One < III < V < IV < VI < VII < VII < IX

Source of the data Tierlist maker website

Baseline axes I'm just having fun here

Results (Ballot Completion)

Solo < II < I < Rogue One < III < V < IV < VI < VIII < VI < IX

Mar < Apr < May < Aug < Jun < Jul < Dec < Oct < Nov < Sep < Jan < Feb

Source of the data Tierlist maker website

Baseline axes I'm just having fun here

Results (Ballot Completion)

-0-0-0-

Solo < II < I < Rogue One < III < V < IV < VI < VIII < VII < IX

Mar < Apr < May < Aug < Jun < Jul < Dec < Oct < Nov < Sep < Jan < Feb

5 < 10 < 1 < 2 < 4 < 3 < 7 < 9 < 6 < 8

Source of the data Tierlist maker website

Baseline axes I'm just having fun here

Results (Ballot Completion)

Solo < II < I < Rogue One < III < V < IV < VI < VIII < VII < IX

-0-0-0-

12

1

Mar < Apr < May < Aug < Jun < Jul < Dec < Oct < Nov < Sep < Jan < Feb

5 < 10 < 1 < 2 < 4 < 3 < 7 < 9 < 6 < 8

Source of the data Tierlist maker website

Baseline axes I'm just having fun here

Results (Ballot Completion)

Geometry Chemistry Physics Math Biology Technology Music Art Physical Education History Social Studies Foreign Language Literature

Question

When do we need to reconstruct such axes?

Motivation: Political science

Ce que le vote par approbation révèle des préférences des électeurs français Isabelle Lebon, Antoinette Baujard, Frédéric Gavrel, Herrade Igersheim, Jean-François Laslier

DANS **Revue économique 2017/6 (Vol. 68)**, pages 1063 à 1076

Motivation: Seriation (archeology)

Motivation: Scheduling

	Lundi	Mardi	Mercredi	Jeudi		
8h30-10h						
10h-12h30	Arrivée	Session méthodologie	<i>Session thématique 3 :</i> Complexité Camille Richer Henrik Agbaryan Sofia Vazquez Alferez <i>Chair :</i> Pierre Cazals	Session thématique 5 : Modéliser l'humain Louise Dupuis Sarra Tajouri Chair : Felipe Garrido		
12h30-14h						
14h-16h30	Session thématique 1 : Adversarité Roxane Cohen Lucas Gnecco Heredia Ahmad Qadeib Alban Chair : Matthieu Hervouin	Session thématique 2 : Reconstruire l'information Houria Braikia Nicolas Fayard <i>Chair :</i> Tahar Allouche	Session thématique 4 : Applications réelles Thibault de Surrel Lola Martin Charles Nourry <i>Chair :</i> Céline Béji	Départ		
16h30-17h	Introduction	Discussions/rump session	Discussions/rump session			
17h-19h30	Installation					
19h30-21h						

Conclusion

We want to reconstruct: an ordering of items.

Example: political axis, chronological axis, optimal spatial ordering.

What we know: binary information on these items. *Example:* preferences of voters, items particularities.

How to do it: we study 5 deterministic methods.

Specifically: Voter Deletion, Minimum Flips, Ballot Completion, Minimum Swaps, Forbidden Triples.

How to compare them: The axiomatic method and experiments.

Axiomatic results: Axioms satisfactions, Impossibility theorems, characterizations. Experiments: On synthetic (with various models) and real (from various sources) data.

More questions

What if... the binary data contains *uncertainty*?

What if... we want a *more expressive structure* than a linear ordering (circular, two dimensional, with positions...)?

What if... we want to be able to *compute the result fast*, and with a lot of data?

Question time!

Now giving the floor to the **great**, the **beautiful**, the **magnificent**...

NICOLAS FAYARD !

