

Solving Maximum Independent Set using Analog Quantum Computing

Pierre Cazals 2024-03-05

Neutral atoms QPU

Arbitrary configuration

2 routes for quantum computing

There are two ways of realizing quantum calculations

2 routes for quantum computing

2 routes for quantum computing

Also hybrid approaches exist...

5

Analog QC

A controllable quantum Hamiltonian

For a given amplitude, if two atoms are placed close enough, they cannot be excited simultaneously.

How to encode a Maximum Independent Set Problem?

Comb Opt

Maximum Independent Set Problem on Unit Disk Graph

Unit-Disk Graph: A graph G = (V, E)

where two nodes are connected if their distance is below a fixed threshold r_b

Independent Set (IS): $S \subseteq V/\forall (x, y) \in S^2, (x, y) \notin E$

Maximum Independent Set (MIS): Finding the IS of maximum cardinality

NP-Complete

Encoding

Correspondence between the cost function and an Ising Hamiltonian

Interaction is continuous but strongly decreasing

 $y=\frac{1}{x^6}$

We can't encode the final state directly, we must start the process in a state where we know the Hamiltonian and the ground state. Then we continuously evolve the system to converge on the problem's encoding Hamiltonian.

Consequence of the Adiabatic theorem: If we evolve slowly enough, we stay within the groundstates of successive Hamiltonians.

Problem: The distance to the problem's encoding Hamiltonian depends on the chosen evolution.

Solving

Reduction using gadget: encode more general graphs

MIS is NP-complete on Unit Disk graph — Any problem in NP is polynomially encodable.

Figure adapted from "Quantum optimization with arbitrary connectivity using Rydberg atom arrays", PRX Quantum, Nguyen et al., 2022

